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Finite-size corrections to the energy levels of the asymmetric six-vertex model transfer matrix are considered
using the Bethe ansatz solution for the critical region. The nonuniversal complex anisotropy factor is related to
the bulk susceptibilities. The universal Gaussian coupling constant g is also related to the bulk susceptibilities
as g=2H " Y/7, H being the Hessian of the bulk free energy surface viewed as a function of the two fields.
The modular covariant toroidal partition function is derived in the form of the modified Coulombic partition
function which embodies the effect of incommensurability through two mismatch parameters. The effect of

twisted boundary conditions is also considered.
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L. INTRODUCTION

The six-vertex model was first introduced as a model for
the residual entropy of ice and for related ferroelectric tran-
sitions [1] but more recently, several other physical applica-
tions are being found. In the body-centered solid-on-solid
models, the six-vertex configuration is mapped to the surface
configuration of the fcc and bec faces and the free energy of
the six-vertex model as a function of the horizontal and ver-
tical fields depicts the equilibrium crystal shapes (ECS)
[2,3]. Also, on the stochastic surface where the vertex
weights satisfy a certain relation, the transfer matrix of the
six-vertex model can be regarded as the transition matrix of
probabilistic cellular automata describing the dynamics of a
driven lattice gas system and a (1-+1)-dimensional surface
growth model [4—6]. The five-vertex model, which is a spe-
cial asymmetric limit of the six-vertex model, can be viewed
as a model for an interacting domain wall system [7], inter-
acting dimers [8], and certain types of crystal surfaces [9]. In
these applications, it is necessary to consider the asymmetric
six-vertex (ASSV) model in which there are nonzero hori-
zontal and vertical fields which break the arrow reversal
symmetries. It becomes the symmetric six-vertex (SSV)
model when the fields are zero. The Heisenberg XXZ chain
is a closely related problem. The Hamiltonian for the XXZ
chain can be obtained from an anisotropic limit of the trans-
fer matrix of the six-vertex model [6]. The vertical field cor-
responds to the magnetic field which couples to the z com-
ponent of spins and the horizontal field corresponds to the
asymmetry in the two hopping rates. The XXZ chain is
called symmetric (asymmetric) if the two hopping rates are
the same (different).

The phase diagram and the nature of the phase transition
in the ASSV model are well known [1,10]. The phase dia-
gram consists of the ferroelectrically and anti-
ferroelectrically ordered phases and the disordered phase. In
particular, the disordered phase shows interesting scaling
properties. It is the critical phase with continuously varying
critical exponents that is described by the central charge
c¢=1 conformal field theory (CFT) in the continuum limit
[11]. Since the ¢ =1 theory plays a basic role in the theory of
two-dimensional critical phenomena, there have been many
works on the scaling properties of the six-vertex model.
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However, most of these works are confined to the SSV
model [12] or the symmetric XXZ chain with or without the
magnetic field [13—16] and to the special case of the five-
vertex model [7], while the critical properties of the general
ASSV model are also of interest. One purpose of this work is
to fill this gap. In this paper we investigate the critical prop-
erties of the ASSV model through the finite-size scaling
(FSS) studies on the transfer-matrix spectra. Our results can
also be applied to the case of the asymmetric XXZ chain.

The FSS is very useful in studying the critical behaviors
of two-dimensional statistical systems on lattice [17]. When
the system is in a critical phase which possesses the confor-
mal symmetry, it imposes strong restrictions on the FSS form
of the eigenvalue spectra of the transfer matrix. Let T denote
the row-to-row transfer matrix for a system with N columns
and M rows. We assume periodic boundary conditions unless
stated otherwise. The energy of the level a defined by
E,=-—1InA,, A, being the ath eigenvalue of T, is expected
to follow the scaling form

B 2 ”( _ c) 27, _ (l)
E,=Nf+ 'I‘V—é“ ha+ha—ﬁ —Té (hg—hy)+o v/
(1)

where f is the bulk free energy (in units of kzT), ¢’ (L") is
the real (imaginary) part of the complex anisotropy factor
{={'+il", c is the central charge, (h,,h,) are the confor-
mal dimensions associated with the level, and o(x) stands
for terms smaller than x; lim,_,go(x)/x=0. The level whose
energy follows the scaling form of Eq. (1) is associated with
a primary operator and its descendants of the corresponding
CFT. When the one-lattice-unit translation by T is incom-
mensurate with the periodicity of the underlying model, an
imaginary term of O(1) may appear in the right-hand side of
Eq. (1) [18]. The toroidal partition function (TPF) .Z is de-
fined as the O(1) part of the partition function:

Z= lim >, e ME N, 2
NM—ew «
M/N = fixed

where the sum is over all levels. If we use the scaling form of
Eq. (1), it takes the form
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Z=(qq)~“* 3, qadle, 3)

where the nome q=e?™7 with 7=7'+i7"= (M/N){ and
g is the complex conjugate of q. The complex parameter 7 is
the modular ratio of the torus on which the corresponding
CFT is defined and specifies how the N X M lattice should be
deformed to make the system isotropic in the continuum
limit. The TPF contains complete information on the spectra
or the operator content of the model and enjoys the modular
invariance (or more generally, modular covariance) proper-
ties which together with the conformal invariance principle
are often sufficient to determine the form of 2 [19]. The
c¢=1 CFT consists of three isolated points and two one-
parameter families [20]. The latter two describe the critical
eight-vertex model or the Ashkin-Teller model and the SSV
model or the Gaussian model compactified on a circle, re-
spectively. They are related by a duality transformation. The
TPF of the c=1 theory corresponding to the SSV line is the
so-called Coulombic partition function [12] given by, for
M and N even,

~ 1 N
(% S — Am.n—Am,n, 4
¢ |77(q)I2m,nEeZq 9 “

where 7(q) is the Dedekind eta function,

n@=aI1 (1-a, &)

and the conformal dimensions are given by
2

>

1
Am)nzz("f—‘i‘\/gn

Vg

(6

zm,n%(%—@n) .

Here g is the Gaussian coupling constant and the integer
indices m and n label the spin-wave excitation and the vortex
excitation, respectively. The Gaussian coupling constant g is
defined in such a way that it takes the value 1/2 for the free
fermion theory and is related to Ki of Ref. [21] by
g=2mKy. However, the CFT being a bootstrap theory, it
does not tell us how g and 7 are related to the lattice model
parameters. To obtain that information, one needs to rely on
the FSS analysis.

The transfer matrix for the six-vertex model or equiva-
lently the Hamiltonian of the XXZ chain is diagonalized [1]
by the Bethe ansatz method for general boundary conditions.
In this paper we present a method of calculating the finite-
size corrections of arbitrary low-lying energies in the whole
parameter space of the ASSV model. Starting from the Bethe
ansatz solution for the system of width N, we derive a sys-
tematic expansion in 1/N of the energies assuming certain
analyticity properties of the phase function which is intro-
duced in Sec. II. The method is very similar to that used in
[15] which considered the symmetric XXZ chain in a mag-
netic field but is generalized to be applicable to the general

cases. From the expansion, we find that the whole critical
phase of the ASSV model is also in the Gaussian-model uni-
versality class with ¢ =1, where the coupling constant g is
obtained from the solution of an integral equation. We also
find that though the susceptibilities are nonuniversal, i.e.,
they depend on nonuniversal parameters, the Hessian of the
free energy is simply given by

aZf &Zf
Ph dhdv 2 \2

S Z(Fg‘) @
dvdh v

and hence depends on the model parameters only through
g. Here, h and v are the horizontal and vertical fields, re-
spectively, in units of kz7. Since we find the FSS form for a
general class of energy levels, we are able to construct the
TPF for the ASSV model with the periodic boundary condi-
tions explicitly. The resulting expression is given by the
modified Coulombic partition function

1 _
- —2mima Am,n—-B_Am,n—,B, 8
In(q)lzm%Ze 9 9 ( )

Z=
where « and B as defined in Eq. (72) are the two mismatch
parameters which account for the incommensurability of the
lattice with the mean distances between down arrows and left
arrows, respectively. The ASSV model under the twisted
boundary conditions (explained in Sec. II) is equivalent to
the ASSV model under the periodic boundary conditions
with modified fields. Using this relation the TPF for the
ASSV model under the twisted boundary conditions is also
derived, which confirms the conjectured TPF for the SSV
model under the twisted boundary condition in the horizontal
direction [22].

This paper is organized as follows. In Sec. II we give a
brief review of the transfer-matrix formulation and its Bethe
ansatz solution of the ASSV model. The classification
scheme of the Bethe ansatz solutions is presented. The rela-
tion between the ASSV model under the periodic and the
twisted boundary conditions is also discussed. In Sec. III,
under a certain assumption we derive a summation formula
which converts a sum over functions of fugacities for general
levels into a finite-size expansion. The assumption turns out
to be the sufficient condition for the criticality in Sec. IV. We
obtain an integral equation for the expansion coefficients and
find that the finite-size correction terms are related to the
partial derivatives of the bulk term with respect to the hori-
zontal and vertical fields. Some of the details of calculations
are relegated to Appendix A. In Sec. IV, applying the sum-
mation formula to the transfer-matrix eigenvalues, we derive
the connections to the c=1 CFT together with the expres-
sions for g. Since we find the FSS form for the general
scaling levels, the TPF’s for the periodic and the general
twisted boundary conditions are derived. In Sec. V we sum-
marize our results and discuss relations to other works. Also,
possible physical relevances to the ECS are discussed. In
Appendix B we prove an identity J=1 where J appears in
the relations between the finite-size correction terms and sus-
ceptibilities. In Appendix C the modular transformation
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FIG. 1. Six-vertex configurations.

properties of the TPF for the ASSV model with general
boundary conditions are discussed.

II. THE ASYMMETRIC SIX-VERTEX MODEL

On the square lattice of N columns and of M rows, the
six-vertex model configurations are obtained by covering the
bonds of the square lattice with arrows which satisfy the ice
rule: At each vertex there are two arrows in and two arrows
out. The six-vertex configurations satisfying the ice rule are
shown in Fig. 1. Following the notation of Ref. [10], the
vertex energies are assigned as

o o
sl=—§—h—v, 82=—5+h+v,
==—h+ —6+h 9
83_-2_— v, 84_5 v, ( )
E5=—€, gg=—€.

We write the energy in units of k37 and denote the vertex
weights as w;=exp(—e¢;). h(v) is the horizontal (vertical)
electric field which is conjugate to the horizontal (vertical)
polarization 1—2p; (1—2pp) where p; (pp) is the mean
density of left (down) arrows. For later uses, we define pa-
rameters

Wiw,twaws—wswg  e’+e 0—e2€

= (10)

2\/W1W2W3W4 2

and

W1W2+W3W4_W5W6 A

A= " cosh(2h) "

(11)

wiw3zt+wowy

The partition function Z is written as
Z=TiTH, (12)
where T is the row-to-row transfer matrix whose definition

can be found in Ref. [10]. Let Q denote the number of down
arrows per row and let

SIS

q= (13)

The thermal average of g is pp. Since Q must be the same
in the two adjacent rows of vertical bonds due to the ice rule,
T can be considered in each subspace of fixed number of
O, which will be called the Q sector, separately. From the
Bethe ansatz method [1], the eigenvalue of T in the Q sector
is given by

A=Ag+A,, (14a)
where
N-Q < WsWe
Ag=w ,I:II (W3_m)’ (14b)
_ _N-Q ° WsWeZ;
Au=w 1=Hl (W2+ W4—W12j)’ (142)

where the fugacities {z;} are given by the solutions of the
Bethe ansatz equation
@ 1+e*z,z,—2e*A
O N I
! j=1 1+e4hzizj—2e2hAzj'

(15)

Note that the fugacities z; introduced in Eqgs. (14) and (15)
are the inverses of the fugacities used in [6] and that the
five-vertex model is achieved in the limit A— *oo keeping
A fixed. Introducing a variable p such that ¢’” =ze2" and the
phase function

Q
1
ZM(p)=p+2hi= 52 O°p.p)), (16)

where

1+eiPtP ) —2 AP

i0%p.p") =
¢ 1+e@*tP)—2AeP"’ (7
the Bethe ansatz equation takes the simple form
)= G=1....0), (18)

where /; are half integers (integers) for Q even (odd) with
range —N/2<I;<N/2. It is obtained by taking the logarithm
of Eq. (15) with the substitution of z;e** by e’/ and the
quantity [; arises from the choice of a phase factor
(—1)2 '=exp[mi(2X integer+Q—1)]. If we define the en-
ergies E’é and E’é through the relation

Agp=explv(N-20)—E"], (19)

they are given as

Q
1)
Eg.L=—[t(h+ —2—)N+;1 %, (p)| (20)
where
o 2A—eT0—e*iP
‘I)R,L(P)ZIHW, (21)

and {p;} are the distinct solutions of Eq. (18). In Egs. (20)
and (21), the upper (lower) sign corresponds to the R (L)
case.

The bulk free energy is obtained from the ground-state
energy. Using the ground-state energy, the free energy e as a
function of 4 and ¢ is given as
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R L
e(h,g)= lim min[gg,@], (22)
No—w RL LN N

where the limit is taken with fixed g. The free energy f as a
function of /# and v is given by the Legendre transformation
of e, ie.,

f(h,v)= min {e(h,q)—(1—2q)v}. (23)

0=g=<l1

The mean down-arrow density pp is the value of g which
minimizes the expression above while the left-arrow density
pr is given by p; =(1+ de/dh)/2. Of the four model param-
eters, only A and & enter the Bethe ansatz equation deter-
mining {p;} while @%,L depends only on A and 8. The ver-
tical field v simply adjusts the mean value of g. Note that the
horizontal field 4 plays the role of an additive constant to the
phase function in Eq. (16). This fact enables one to follow
the same line of analysis as in [15]. The asymmetric XXZ
Hamiltonian is diagonalized with the same Bethe ansatz
method but with a different energy function [6]. In the next
section we will show that the FSS properties do not depend
on the form of the energy function. So the asymmetric
XXZ chain shares the same critical property with the ASSV
model.

Different choices of the set {/;} in Eq. (18) lead to differ-
ent eigenstates. It is well established that the ground-state
energy is obtained if I;= —(Q + 1)/2+j. In analogy with the
free fermion theory, we will say that a position j is occupied
by a particle (hole) if ¢;=—(Q+1)/2+ is included (not
included) in the set {/;}. Then the solution is classified by
the particle-hole configurations. The ground state corre-
sponds to the Fermi sea as shown in Fig. 2(a). An important
class of levels is characterized by shifting the Fermi sea by
m, i.e., choosing I;= ¢j+m. We call this the m-shifted lev-
els and show in Fig. 2(b) an example. Creating particles and
holes at either end of the m-shifted states generates
the whole class of excited states which scale as 1/N in
the critical phase. A general form of these excitations is
obtained by creating n,, particles at positions j=Q+m+p;

k=12, ...,n,), with 1s<p;<p,<-.- “<Pn, T holes at
J:Q+m+l_hk, (k=l,2,...,nh), with lsh1<h2
<--~<h,,h, n, particles at j=1+m—p, (k=12,..., np),

with 1<p,<p,<---<p;. and 7, holes at j=m+h,
(k=1.2,..., ), with 1=<h;<h,<---<h; . Without loss
of generality we can set n,=n;, and n,=n;, . A particle-hole
configuration is collectively denoted by &°. And we will de-
note such an excited level by (Q,m,7”). In Figs. 2(c) and
2(d), we give some examples of particle-hole configurations.

For each range of A, there exists a variable transforma-
tion p=p(a) with which ®%p(a),p(B)) defined in Eq.
(17) depends only on (a— ) [3,10,23]. The resulting func-
tion is denoted by @, ie., @(a—B)=0°(p(a),p(B)).
Zn(a) and @ ;(«) are defined similarly. We use superscript
0 for functions of p and no superscript for functions of «. In
the thermodynamic limit N—o with fixed g, the Bethe an-
satz equation becomes an integral equation for the phase
function under the assumption that the solutions of Eq. (18)
lie densely on a smooth curve % in the complex-a plane

[e}ye} [ON©)
OO OO oO OO
O O (6] o
O (6] (0] [ ]
0] [¢] O [ J
[ ] [ ] o L]
[ ] ] o} [ ]
[} [ ] [ ] ®
® ® L] [ ]
[ BRI [ JPRrY
(a) (b)
(ONe] [e}ye]
OO OO OO OO
o} o} e} e}
(6] [ o [ ]
® [ ] ¢] [ J
[ ] (0] L J L]
(¢] o} (0] ®
(] (] o} ®
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0gqe® [ BPRr
() (d)

FIG. 2. A few examples of particle-hole configuration for
N=24 and Q=12. We denote the values of /; by the angular coor-
dinate of equispaced small circles on a unit circle. Closed circles
denote the occupied positions. (a) depicts the the ground state, (b)
the m=2-shifted state, while (c) and (d) show excited states from
(a) and (b), respectively.

with end points A and B. For the ground state, the contour is
symmetric with respect to the imaginary axis so that
A= —B*. Then Z,=limy_,.Zy should satisfy the integral
equation

1 (B
Zu(e)=p(@)+20i= 5= [ O(a- )Z.(B).dB.
24)

where Z.(B) is the derivative of Z..(8) with respect to 3.
The solution of Eq. (24) depends on A and B which are
determined as a function of g and 4 from the generalized
normalization condition

Z.(B)=mgq (25)
or, equivalently,
Z,(A)=—mq. (26)

Using the solution of Eq. (24) and relation (25), the bulk free
energy e in Eq. (22) is given by
h in{ ¥h¥ o f BCI) Z. (a)d
e( ,Q)~I;1,1Ln Ry re(a)Z (a)day,
27)

where the upper (lower) sign corresponds to the R(L) case.

Before closing this section, we discuss the effect of the
twisted boundary condition. The boundary conditions do not
affect the bulk properties but change the operator content and
hence the TPF. The twisted boundary condition in the context
of the XXZ chain is to impose the condition
On+=exp(=2mil)o; where o are the Pauli spin opera-
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tors. In the vertex model language, it is equivalent to assign-
ing an extra vertex weight exp(= mil) to the horizontal arrow
in the first column. More generally, one can impose the
twisted boundary conditions (Z,{") by introducing the seams
in the first column and the first row where an extra weight
e (&' is assigned to each right (left) arrow in the first
column and similarly an extra weight ¢'™ (e ~'™") is as-
signed to each up (down) arrow in the first row. Note that the
effect of the vertical field is to give each up (down) arrow on
the lattice an extra weight ¢” (e V). However, since the
number of up arrows is conserved from row to row, one
obtains the same effect if a vertical field of strength Muv is
applied only to the first row of vertical bonds. Conversely,
having a seam with extra weights et g equivalent to
assigning extra weights e*™'/™ o all vertical bonds. A
similar observation holds for the horizontal field also. There-
fore one then sees that the ASSV model with the twisted
boundary conditions (/,!") is equivalent to the ASSV model
with periodic boundary conditions and with fields
h=h—mil/N and G=v+mil'/M. In the XXZ chain, such
relations are achieved by a unitary transformation as dis-
cussed recently in [24]. A similar symmetry operation exists
in the six-vertex model too [25].

II1. SUMMATION FORMULA

In this section we derive the summation formula which
converts the sum of the type

) 1<
A= 52 L@

where f° is an arbitrary function which does not depend
explicitly on 2 and g and {p;} is the solution of Eq. (18) for
the (Q,m,%) level, into a series in 1/N. We obtain the ex-
pressions for the expansion coefficients and derive the useful
relations between the correction terms and partial derivatives
of the bulk contribution of the sum. The phase function in
Eq. (16) and the energy eigenvalue in Eq. (20) involve such
sums. For example,

ERE= -N[ + ( h+ ;_s) +.7 [‘P?e,L]} (28)

With the change of variable p =p(«) explained in Sec. I,
the sum becomes ‘

1 Q
Zf= =2 fla), (29)
N=

where f(a)=f°(p(a)) is not to be confused with the free
energy f(h,v), «; are given by

—1 277'11
a;=Zy N | (30)

with {I;} corresponding to the level (Q,m,7), and Zy' is
the inverse function of Zy. Using Eq. (30) in Eq. (29) and
making explicitly reference to the locations of the particles,
one can rewrite Eq. (29) as

"p

12 12 1
S U= 52 @ 8D+ 72 U (o) =1 @3 ST+ 52 Uy (bomp)) @ (bomrr-1,)]

13
PRI R CAN AN E

where

¢j=——2 +. (32)
The first sum is over the Fermi sea, the second accounts for
the shift of the Fermi sea, and the third (fourth) accounts for
the particle-hole configurations at the right (left) end of the
Fermi sea. The general strategy here is to regard Z;,l as
known first and determine it self-consistently later. To pro-
ceed, we make the crucial assumption that Z;1(¢) has the
finite first derivative at ¢=* wg. We will see later that the
1/N scaling of the energy gaps, or the mass gaps, throughout
the critical phase follows from this assumption. Conversely,
we assume here that the critical phase is characterized by the
fact that Z, ! /( * mq) exists with possible exceptions at some
special points such as at (=0, g=1/2). Note that this as-

k=

(31)

sumption fails on the stochastic line A=1 where the energy
gap does not scale as 1/N but as 1/N*? [6]. Now, applying
the Euler-Maclaurin sum formula to the first sum of Eq. (31)
and using the Taylor expansion of f(Zy'(¢)) at ¢=* g
for the rest of the sums, one then obtains, to O(1/N?),

o B 1 J‘Trq 1 4 m - mq

U= 52 _Wf(ZN (p)de+ S (Zy ()] .
27 (m? 1 e o

t |\ T T @y (ma)Zy (mq)

2

2 (m 1 o\ it _y
N\ T T N @y (mma))Zy (—7mq)

1
+0(Kf—2—)’ (33)
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where

n

14
A= 2(k+hk

k=1

7y
j/=k§ (Prth—1). (34)

This is not a correct 1/N expansion yet since Z;]((i)) also
has N dependence. We next assume that Zy(a) possesses the
1/N expansion of the form

bi(@) by(@)
N N?

Za)y=Z(a)+ +0<N—12->, (35)

where Z.., by, and b, should be determined later. Inverting
Eq. (35) using the change of variable ¢=Z,(a), the N de-
pendence of Z;l(qﬁ) can be shown to be

NZ(a) N Zi(a)

1 bia) \’ . 1 2

Z@ \2zL@) |\ 9

where ' denotes the derivative with respect to «. Inserting
Eq. (36) into Eq. (33), expanding all quantities to O(1/N?)

again, and changing the integration variable from ¢ to «,
one finally obtains the summation formula in the form

Zy'(¢)=a—

1
Ff1=Fo+ 1+~1\-,72+o(1—\77), (37a)
where
Z 1 B !
YO_ﬁL fla)ZL(a)da, (37b)
1 (B
'}vl:ﬁj,; () 2mm—b,(a)]da, (37¢)
1 (B
Vz=—§;fAf’(a)bz(a)da
27f' (B) | m? b(B)\?* 1 )
Z08) 7(1““‘27”") “ﬁ*”}
27" (A) [m? (AN 1
LA [’2‘(1 2'n'm) “at
(37d)

Here A and B=—A* are determined from Eq. (25) or Eq.
(26) as functions of 4 and q.

In deriving Eq. (37), we assumed the scaling form of Z
in Eq. (35). The self-consistent equations for Z,,, b;, and
b, are obtained by applying the summation formula to Eq.
(16) with f(B)=—0O(a—B). Equating corresponding or-
ders in both sides of the resulting equation, we obtain Eq.
(24) for Z,(@) and

Jo[b(a)]=m[O@(a—A)—0O(a—B)],

27 [m2( bl(B)) 1 -
Z® | 2\ 2am) "2t

(38a)

o [by(a)]=

XK(a—B)—

27 [mZ( bl(A))z
zZm| 2!

1.
— 53t |K(a=A4),

where K(y)=d®(vy)/dy and .7
by

7 is a linear operator defined

1 (B
7olG()=G(@)+ 5= [ K(a-pG(BIaB (39)

for any function G(«).
The solutions of Eq. (38b) are written in terms of the
function F(a,u,A,B) [14] which is defined by

1
.70[F(a,,u,,A,B)]=—EG(a—/,L). (40)
Because O is odd and A= — B*, it satisfies the relation
F(a,m,A,B)=—F(—a*,—u*,A,B). 41)
Using the linearity of Eq. (38b), b;(«) can be written as

bi(a)y=2mm[1—-D(a)], (42)

where
D(a)=1—%[F(a,B,A,B)—F(a,A,A,B)], (43)

the dressed charge function [14]. Equation (41) implies that
D(a)=D(—a*) and so D(A)=D(B). Using this, b,(«) is
written as

b 4m_(Dom” 1 | F(a,B,A,B
2(a@) ZB\ 2 T (a,B,A,B)
4 Dom 1 ar AAB
7\ T2 Tt )
(44)
where F(a,u,A,B)=—3dF(a,u,A,B)/du and
Dy=D(A)=D(B). (45)

Inserting these into Egs. (37¢c) and (37d), we can put.””; and
7, in the form

B
y1=mfAf'(a)D(a)da, (46a)
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_, (Dimt 1 [Pom® o 1);

=27 T+ﬂ/_ﬂ {—2mi T+/I/_ﬁ &
(46b)

where
1 B o .

r= m( fAf (a)F(a,B,A,B)da+ mf (B)),
(47a)

- 1 B, 2 !

év:m(fAf (a)F(a,AA,B)da+ mf (A))~

(47b)

We have used the notation ¢ and ¢ for the quantities on the
right-hand side of Egs. (47a) and (47b), respectively, antici-
pating identification of them as the anisotropy factor. The
fact that £ is the complex conjugate of £ is not transparent in
this form but will turn out to be the case, as will be seen
later.

The resulting expressions for .%°; and ./, seem to be
rather complicated. But, the following manipulations show
that they are related to the partial derivatives of ., with
respective to g and k. To take necessary derivatives, one
needs to consider the variations of A , B, and Z,(«), which
is denoted as A, 6B, and 6Z.(«a), respectively, upon the
variations of 4 and g, denoted by h and dq, respectively.
We show in Appendix A that they are given by

ZL(A)8A=—[m+D,(A)]8g—2iDoSh,  (48a)
Z.(B)8B=[m—D,(B)]8g—2iDySh,  (48b)
6Z(a)=Dy(a)8q+2iD(a) h, (48c)

where
Dy(a)=F(a,A,A,B)+F(a,B.A,B). (49)

From Eq. (41), one can see that D,( @)= —D,(— a*), which
implies that D,(A)= — D,(B). On the other hand, the varia-
tion of .9 given by Eq. (37b) is

1 1 (8
55— L)+ (B8 = 5= f (@) 67.(@)d,
(50)

where a partial integration and Egs. (25) and (26) are used.
Combining Egs. (50) and (48c), one obtains
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3h_=‘;fAf'<a)D<a>da, (51)
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aq 2

1 (B
Lf(A)+f(B)]— —2;JA f(a)Dy(a)da, (52)

which, compared with Eq. (46a), gives the first relation

S =i 7% 53
S=iTm—s = (53)

It means that the first-order correction term is proportional to
the partial derivative of the bulk term with respect to 4.
Next, the variations of 3., /dh and 9.7,/dq are shown in
Appendix A to take the form

975\ i} 2iD3
5( ah)—l(s”r{)ﬁq— —(f=0)dn, (54)
(ayo)_mﬂ 5 5 > 5

P —Z—Dg(ﬁ—ﬁ q+J({+{)6h, (55)

where ¢, £ are given in Egs. (47a) and (47b), and

J is a constant depending on 4, g, and A through A, B, and
®. But we find that the value of J is equal to 1 for any
values of A, and B whenever the function ® is odd and
A= —B*, We give the detailed proof in Appendix B. Using
the fact that /=1, we then have from Eq. (54) the expression
for ¢ and  in terms of the partial derivatives of .7} as

1[0 &y/o+m' P 1] 9 (67
£=3\54\n ) " 202 a7 )T

dq 2|0h\ dq
2iD} 6%.7, 57
T Ta il (57)
and
o 1o (67 m LS,
¢=32\54\ on 2D on?
1[0 (057, 2iD} *.7,
=_|= + -~ (58)
2|0h\ dq T dq

Since . is a real function of 4 and g, it is now obvious that
¢ is indeed the complex conjugate of ¢ as claimed before.
From the second equalities in Egs. (57) and (58), we find the
identity

32 Sl 3q* m \?
o/ g ( ) (59)

PSlah? \2D2

This identity comes from the fact that /=1 and is very im-
portant in identifying the universality class of the critical
phase of the ASSV model. Equations (53), (57), and (58)
together with Eq. (46b) relate the finite-size corrections to
the derivatives of .”%. An analogous relation between the
Fermi velocity and magnetic susceptibility has been obtained
by Bogoliubov er al. [14] for the symmetric XXZ chain but
our result is more general.

IV. FINITE-SIZE CORRECTIONS
OF THE TRANSFER-MATRIX SPECTRA

In this section we investigate the finite-size corrections to
the transfer-matrix spectra of the ASSV model using the
summation formula obtained in Sec. III. For simplicity we
only mention the case where Eg<EIé, which we call the
R case. Most of the results are the same for both R and L
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cases. The energy for the level (Q,m,%) is obtained by ap-
plying the summation formula to Eq. (28):

1)
EQ,m,,/’: ~(l’l‘}‘ —2—+V0[CDR])N~VI[CDR]

S Pgl 1

where the leading-order term contributes to the bulk free
energy, i.e., ¥y= —e—h— 6/2 from Eq. (22). The correction
term .% is obtained from Eq. (53),

A =—mim(e,+1), (61)
and .%, is given by Eq. (46b) with

1 i 1 iD}
§:—56h,q—4—D%€h,h="’2“eq,h+ T €aq (62)
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from Eq. (57). We use the shorthand notations that the sub-
scripts of e denote partial derivatives. Note that
e,=2p;—1 where p; is the left-arrow density [for the L
case, (e,+1) in Eq. (61) is replaced by (e,—1)].

The partition function is

B= QE/ e MEQm rtvM(N=20) (63)
m,.

with Eg ,, » given in Eq. (60). To sum over the sectors Q,
we take advantage of the fact that the summand in Eq. (63)
is peaked around the value of Q near Q=Npp. Insert-
ing g=pp+(Q—Q)/N into Eq. (60) with a term
—v(1—2¢)N added and expanding to order 1/N? assuming
0—Q is of O(1), one gets the scaling form of the energy as

> !

2 _ _
Egm.—0(1=20)N=f(h.v)N+2mimp,— ﬂTlg[m(Q— O)+ 4 =]

277_&«//

+ 27 D2+

N

where f(h,v) is given in Eq. (23), ¢’ ({") is the real (imagi-
nary) part of ¢ given in Eq. (62), and the relation
dpL/dq=e) ,/2 has been used.

On the other hand, for models whose TPF is given by Eq.
(4), the O(1/N) part of the energy is expected to behave as
2a¢" [m? gn? 1

+ + N+ 2mif’
N \2¢g 2 77T 12 N

(mn+. "= 4.

Comparing Eq. (64) with this expression and identifying the
indices m and O — Q in Eq. (64) as the spin-wave and vortex
indices, respectively, as in the SSV model, one sees that the
critical phase of the ASSV model is indeed in the Gaussian-
model universality class with ¢=1. The Gaussian coupling
constant g can be read off from the coefficient of m? in Eq.
(64) as

1

= 2—Do’ (65)

8
where we recall that D, is defined in Eqgs. (45) and (43).

However, from the coefficient of (Q—Q)? in Eq. (64), we
also have the relation

_ %agq
8= 27T§N . (66)

Therefore, to identify the spectra Eq. (64) with those of the
Gaussian model, we require that the two expressions of g,
Egs. (65) and (66), give the identical result. Using Egs. (62)
and (65), the condition is then

Ca.a (Q— Q)+ N+ 0~ —1—)+0(—1— (64)
4" T 12 N/’
— 229 (g2, (67)
h,h

which is guaranteed by the identity (59). That the coupling
constant g is given by Eq. (65) was derived by Izergin and
Korepin [26] for the symmetric XXZ chain in a magnetic
field but it also holds for the ASSV model. Using the rela-
tions

_SunfowFnufon
[ f >
v,v
4
e =

4 fU,U

in Eq. (67), we obtain an alternative expression given in Eq.
.

Before proceeding further, we should question the validity
of the summation formula. If the summation formula is valid
with nontrivial solution for b,, i.e., b,(a)#0, then transfer-
matrix spectra follow the scaling form in Eq. (1) which holds
only in critical phase. We have assumed the expansion forms
of Zy and Z;,l in Egs. (35) and (36) in deriving the summa-
tion formula. The assumption is valid only when the coeffi-
cients are finite, i.e., Z. should not be 0. Otherwise, the
summation formula does not hold and the criticality is not
guaranteed. So it is the sufficient condition for the criticality
that Z,.(a) and b,(«@) are not zero. It is compatible with
earlier studies on the phase diagram of the asymmetric six-
vertex model. First, for A=1 Z_(A) is always O for any
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values of ¢ when A=1 [3]. At this point, the ASSV model
describes stochastic growth models and the finite-size correc-
tions show the Kardar-Parisi-Zhang scaling [4,6]. Another
case occurs when A<{—1. In this region, the anti-
ferroelectric phase exists when g =1/2. The phase boundary
is given in [10] and Z,(A) at the phase boundary is also 0.
The finite-size corrections on this phase boundary have re-
cently been studied by Albertini et al. [27]. There is also an
ordered ferroelectric phase with ¢g=0 in which case A=B
from Egs. (25) and (26). In this case b, () is identically zero
and the system is also out of criticality. The g=0 and 1/2
ordered phases are separated from the critical phase by the
Pokrovsky-Talapov (PT) transition [1].

Inside the phase boundaries stated above, the system is
critical and the finite-size corrections to the transfer-matrix
spectra are obtained from Egs. (60), (61), (46b), and (62).
Actual values of g through the critical phase can be mapped
out without difficulty. In Fig. 3 we present the constant-g
lines in the (A,q) plane for tanh(2k)=0, 0.5, and 1.0. As
seen from Eq. (65), g is obtained from the function D. In-
stead of solving Eq. (40) for F and using Eq. (43), we study
the integral equation for D(«),

Fo[D(a)]=1, (68)

which is obtained by combining Egs. (43) and (40). It can be
solved analytically only for special cases. For g =0, there is
a trivial solution Dy(a)=1. So we have g=1/2 at g=0 and
at g=1 by symmetry. For A(= —coshA)<<—1, the antiferro-
electrically ordered phase with ¢=1/2 appears for A< AC
with

- A

A= cosh(2h,)’ (69)

where &, is given by [10]

o (="

n=1 n

e~ 2"Manh(An). (70)

h.=1 h\ A
= 1n Cos 5

The value of AC decreases from — 1 for tanh(24)=0 to —4
for tanh(2A)==*1. At the phase boundary, the value of B is
7+iN [10]. Then Eq. (68) is solved by Fourier series
method to yield the solution D(«@)=1/2. So we have g=2 at
the antiferroelectric phase boundary. For A>1, the ASSV
model is critical only for A<1. As A approaches 1 from
below, g decreases to 0. For the SSV model, the model is
critical for —1<A(= —cosy)<1 and the value of g is given
by the simple formula g=1— y/7r [13]. In this case, B—®
and naive application of Eq. (68) is invalid due to the fact
that Z, (*+o)=0. However, a careful treatment using the
Wiener-Hopf method can reproduce the correct result start-
ing from Eq. (68) [14,25]. For other cases, the values of g
are obtained by solving the integral equation (68) numeri-
cally. Note that there is a discontinuity in g from 1 to 2 at
(/S,q)=(— 1,1/2) for tanh(2k)=0. It is the Kosterlitz-
Thouless (KT) transition point where the free energy has the
essential singularity [23]. There is a crossover from the KT
transition to the PT transition for tanh(2k)#0.
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FIG. 3. The constant-g lines are plotted in the (A,q) plane for
tanh(24)=0 in (a), 0.5 in (b), and 1 in (c). These are obtained from
the numerical solutions of Eq. ( 68). On A=0 and ¢=0 lines,
g=1/2. On A=1 line g=0. The value of g increases in steps of
0.1 from right to left and reaches 2 at g=1/2 and [&<AC. The
figures at the top show g as a function of A at g=1/2 and the
figures at left show g as a function of g at A=—3in (a), —4 in (b),
and —5 in (c). The rectangular symbols denote the phase-transition
points AC from the critical phase to the ¢ =1/2 ordered phase.
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We next derive the TPF 2. Using the scaling form of Eq.
(64) and the identity Eq. (67), it can be put in the form

Z= 2 2 e~2m'mpLMeXp

Qmel 7

27ri7'(AmQ ot A — 71

_ 1
—ZWiT(AmQ Q+/// 24” (71)

where the modular ratio 7 is given as 7= (M/N) {. The sum
over &7 produces the factor

1

S = 1/24 50— 1/24 _
2 q q =,
7 7(q) 7(q)

where the nome q=¢27™7 and 7(q) is the Dedekind eta func-
tion given in Eq. (5). Now we introduce the two mismatch
parameters

a={p;M} and B={ppN}={0}, (72)

where {x} denotes the fractional part of x; i.e., @ and B are
the mean number of left arrows per column and down arrows
per row, respectively, modulo 1. We next change the index
Q in Eq. (71) to n by the relation Q— Q=n— (. Then the
TPF for the critical phase of the ASSV model is given in the
form of the modified Coulombic partition function as given
in Eq. (8). The mismatches come from the incommensuration
of arrow densities p; and pp with system size M and N,
respectively.

We also consider the effect of the twisted boundary con-
dition on the TPF. Since the twisted boundary condition
(1,1') corresponds to the ASSV model with the periodic
boundary conditions but with the modified fields & — mil/N
and v+ mil’'/M, these O(1/N) changes of A and v modify
the TPF. Thus one replaces 2 and v by h—mil/N and
v+ mil'/M, respectively, in Eq. (64), and makes Taylor ex-
pansion to the necessary order in 1/N to obtain the boundary
condition effect on the finite-size corrections. After a
straightforward calculation the resulting TPF is found to be
generalized to

Q(pL Pb 10 ;M,N, ,r) :e‘n'iMl(ZpLA 1)—aiNl'(2pp—1)

X Zoc{Mp} ANpp};L,1'| 7),
(73)

where i?gc is the generalized Coulombic partition function
defined as

og;z @, ;l,l/ . 727rima—27ril'(n*,8)
se(@.f Im)= (Q)]2mnzez
Xqu‘l,n*BqA_m*l,n*ﬂ_ (74)

The toroidal partition functions in Egs. (8) and (73) satisfy
the necessary modular covariance as they should. These are
discussed in Appendix C.

V. DISCUSSIONS

In this paper we utilized a method of calculating the
finite-size corrections applicable to the critical phase of the
ASSV model and investigated the FSS of the transfer-matrix
spectra of the model for arbitrary sector Q =¢gN. Since we
work for general g, the string solutions appearing only at
g=1/2 do not complicate the analysis [28] and low-lying
excitations are easily classified. For any low-lying levels, the
finite-size corrections for arbitrary sum over functions of
fugacities are related to partial derivatives of the bulk con-
tributions; Eq. (53) for the first-order term and Egs. (46b),
(57), and (58) for the second-order term. From this, finite-
size scaling amplitudes of the ASSV model are related to
thermodynamic quantities. Those relations are derived using
only the algebraic structures of the Bethe ansatz equation and
the form of the energy function is irrelevant to the FSS prop-
erties as long as it does not depend explicitly on # and ¢. In
particular, the energy of the asymmetric XXZ chain [6] is
given as

1 Q

= —cosh(Zh),Z] (A—cosp)), (75)

where {p;} satisfy the Bethe ansatz equation (18). If we con-
sider (cosh2h)E rather than the energy itself, the summand in
Eq. (75) does not explicitly depend on ~ and ¢ and the re-
sults of Secs. III and IV are directly applicable.

The ASSV model is conveniently parametrized by the in-
teraction parameter A [Eq. (11)], the anisotropy & [Eq. (9)],
the horizontal field %, and finally vertical field v or alterna-
tively, the down-arrow density ¢g. For fixed h, &, and
q(#1/2), the model is critical for —%<A<1. When
g=1/2, however, the region defined by A< [&C with Ac given
by Eq. (69) corresponds to the antiferroelectrically ordered
phase. We showed that the critical phase is in the Gaussian-
model universality class with ¢=1 and the Gaussian cou-
pling constant g as given by Eq. (65). The value of g ranges
from 0 at the stochastic limit A=1 to 1/2 at the PT transition
lines bordering the g=0 or g=1 phases and to 2 at the PT
transition lines bordering the ¢ = 1/2 antiferroelectrically or-
dered phase.

We also constructed the TPF in Eq. (8) for periodic
boundary conditions and in Eq. (73) for more general twisted
boundary conditions. Due to the incommensuration of arrow
densities, it takes an additional phase factor e 27"% and a
constant shift 8 in the vortex-excitation index n. The phase
factor comes from the O(1) imaginary term of the energy
spectra Eq. (61) which can be understood as follows. The
continuous lines connecting the left pointing arrows may be
pictured as domain walls or steps running across the lattice.
Since there are p; M of them, the mean distance between
them is 1/p; lattice units. Thus the periodicity of the lattice
in the time direction is enlarged by the same factor and the
transfer matrix T is the p;th power of the time translation
operator for one wunit distance. Therefore a factor
exp(2mip;) may appear in the spectrum. As shown in Ap-
pendix C, the mismatch parameter in the phase factor of Eq.
(8) becomes that which shifts the vortex-excitation index
upon the modular transformation which simply rotates the
lattice by 90°, exchanging the role of M and N.
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Our result for the TPF is consistent with all other previous
results. For the five-vertex model in the noninteracting case,
the TPF on a deformed square lattice is given as [7]

~ 1

Zs.,= 2 e—ﬂinqum,n—Qoqu,pz—QO, (76)

| nlzm,n cZ

where Qo=(1—pp)N and Q,=R2pr—pp—1)M. The
TFP’s on different geometry can be transformed to each
other through the modular transformation (see Appendix C).
One can find that Eq. (76) is obtained from Eq. (8) through
the modular transformation 7—7+M/(2N) with
M/(2N)=1. In the SSV model, p; =pp=1/2 and hence «
(B) is 0 if M (N) is even and 1/2 if odd. If the twisted
boundary condition (Z,0) is applied in the SSV model, the
operator content of this model obtained by other methods is
summarized by the TPF [22]

~ 1

Z= 2 ezwim/‘l“qu—l,n—-Vqufl,n*v’ (77)

[7(Q)*nirez

where w(v) is O for M(N) even and 1/2 for odd. It is in
agreement with Eq. (73) when one uses p;=pp=3 and
I'’=0 in Eq. (73).

The asymmetric XXZ chain is obtained if one takes an
extreme-anisotropic limit in which the vertex weight ap-
proaches the limit wy=w;,=0 and w;=w,=ws=wg=1.
With an appropriate parametrization, T can be put in the
form

T(u)=exp[iP—uHyy,+ 0 (u?)], (78)

where u is the so-called spectral parameter as a function of
which T(u) form a commuting family, P is the shift operator,
and Hyy is the asymmetric XXZ chain Hamiltonian. There-
fore T and Hyy, share a same set of spectra. However, the
TPF is not the same as Tr exp(—uMHyy). This is why com-
plete information on the operator content for the XXZ chains
is not sufficient to construct the TPF of the lattice model.

When the ASSV model is considered as a model for the
ECS of, e.g., a fcc (110) surface, the free energy f(4,v) itself
is the height of the surface from the base (110) plane with
appropriate identification of coordinates. In particular, the
surface curvature « defined in, e.g., [2], is related to the
Hessian of f by

d2

K= mHW, (79)

where d is the distance between the crystal planes. Our re-
sult, Eq. (7), then relates « to g by
2d* 1

K kol g (80)

exactly. When the interactions are intrinsically antiferroelec-
tric, the g = 1/2 phase at low temperatures corresponds to the
flat (110) facet. As the temperature is raised the facet area
becomes smaller and finally disappears at the roughening
temperature 7. The roughening transition corresponds to
the KT point where g = 1. Thus there occurs a universal jump
in the curvature of magnitude 2d?/(mwkgTg). This universal
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jump has been anticipated from the Coulomb gas picture of
the solid-on-solid models [29] and also from the solution of
the six-vertex model near z=v =0 [2] and has been mea-
sured experimentally [30]. Our result goes beyond this.
Equation (80) being exact, it applies to all points of the
curved portion of the crystal. In particular, near the PT tran-
sitions where the curved surface joins the facet smoothly
with the exponent #=3/2 [31], one expects the universal
jump of the curvature with g=2 or g=1/2 depending on
which portion of the PT line is appropriate. It is interesting to
speculate whether the relation Eq. (80) also holds for other
solid-on-solid type models and for real samples. If it is valid
for real systems, it would provide a means to measure the
critical exponent directly from surface curvatures.
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APPENDIX A: VARIATIONS OF THE PARTIAL
DERIVATIVES OF %,

In this appendix we consider the variations of .%%, upon
the variations of 2 and q. As & and g vary, the end points
A and B also vary, satisfying

w8q=6Z,(B)+Z.(B)SB (A1)

and

—m8q=6Z.(A)+Z,(A)SA. (A2)
They are obtained from the variations of Egs. (25) and (26).
Since this involves 6Z.(a), we take the variation of Eq.
(24) after performing the partial integration inside the inte-
gral operator. This gives a simpler result,

8Z.(a)=2iD(a)6h+D,y(a)dgq, (A3)
with D and D, defined by Egs. (43) and (49). In taking the
variations in this appendix, it is convenient to use the integral
representations of D and D, rather than the definitions in
Egs. (43) and (49). The integral representation for D is given
in Eq. (68) and the other for D, are easily obtained by com-
bining Egs. (49) and (40):

1
TP[Dy(@)]=~5[O(a=A)+O(a—B)], (A4

where the operator .7 is defined in Sec. III. Inserting Eq.
(A3) into Egs. (A1) and (A2) gives Eq. (48).
Next, consider the variation of Egs. (51) and (52):

2%
oh

): - i( fo’(a)aD(a>da+f'(B)Doc‘>‘B

™ A

—f’(A)DorSA), (A5)
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(&.%)_ 1 (5
S (9—q- ——ﬁfAf (a)é‘Dz(a)da
+f’(A)(lJrDz(A))gA
2 i
+f(23)(1—D2(B))5B. (A6)

The variations of D(«) and D,(«) are obtained from Egs.
(68) and (A4). After a straightforward calculation, one can
find that

Dy . .
sD(a)= ?O{F(a,B,A,B)5B—F(a,A,A,B) SAY,

(A7)
B ( Dz(B)) .
SDy(a)=—|1— - F(a,B,A,B)6B
D,(A)\ .
-1+ - F(a,A,A,B)5A. (A8)

Using Egs. (A7) and (A8) in Eqs. (AS) and (A6) and using
the definitions of { and ¢ in Eq. (47), one obtains

054 iDy s
0\ =5 | = — - Li{ZL(B)0B—i{Z(A)6A], (A9)

95\ 1 Dy(B)\ . _,
5(‘@)—-5(1“ p )z{Zw(B)éB

1( DZ(A))‘ ’
ol 1+ ——|ilZ(A)6A,  (A10)

which together with Eq. (48) give Egs. (54) and (55).

APPENDIX B: THE PROOF OF J=1

In this appendix we present some identities between the
partial derivatives of F(a,u,A,B) defined in Eq. (40) and
prove the identity J=D(B)[1 —D,(B)/mw]=1, where

D(B)=1- %[F(B,B,A,B)—F(B,A,A,B)], (B1)

D,(B)=F(B,B,A,B)+F(B,A,A,B). (B2)

In general, / may be a function of a and b with
A=—a+ib and B=a+ib. But, Eq. (40) is invariant under
the shift of all arguments by an imaginary amount, i.e.,
Fla,u,A,B)=F(a+iu,u+iu,A+iu,B+iu) for any real
u. This means that D(B), D,(B), and thus J are functions
of only a. When a=0 the function F(«,u,A,B) becomes
simply — § ®(a—u) and so J=1. Thus, for the proof of
J=1, it suffices to show that the total derivative of J with
respect to a is identically O.

The total derivative of J contains the partial derivatives of
F(B,B,A,B) and F(B,A,A,B) with respect to a:

d .
—-F(B.BAB)=F' —F—F,+Fp, (B3)
d .
—-F(B.AAB)=F'+F—F,+Fy, (B4)
where F'=0F/da, F=—JF/du, F,=JF/dA, and

Fp=0dF/dB. We use the convention that the arguments of
the functions are (a,u,A,B) when not shown explicitly.
First, we derive several identities between partial derivatives
of F, which will simplify Eqs. (B3) and (B4). Taking partial
derivatives of Eq. (40), one obtains integral equations for
F', F,, and Fp. After some manipulations, they take the
form

1 1
JoF'=— —Z—K(a/—,u,)+ —Z—W[F(B,M,A,B)K(Q—B)

—F(A,u,A,B)K(a—A)], (B5)
1

TOF,=5—F(A,1.A,B)K(a—A), (B6)
1

ToFp=—5—F(B,u.A.B)K(a—B), (B7)

where .7 is defined in Eq. (39). Note that F and F can be
written as

F(a,u,A,B)=7 lo[— 2 O®(a—u)], (B8)

Flau,A,B)=7"o[~ {1 K(a—p)], (B9
where .7 ! is the inverse operator of .7 Using the linearity
of Egs. (B5), (B6), and (B7), F’, F,, and Fy can be ob-
tained by applying .7 !, to Eqs. (B5), (B6), and (B7) which
yields

F'(a,u,A,B)=F(a,u,A,B)
1 .
~ —[F(B.u.A.B)F(a,B,A,B)

—F(A,,A,B)F(a,A,A,B)], (B10)

1 .
Fy(e.pu.A,B)= = —F(A,w.A.B)F(a.A,A,B),
(B11)

1 .
FB(a9/'L’A’B): ;F(B,/.L,A,B)F(CY,B,A,B) (Blz)

Using these relations in Egs. (B3) and (B4), one can ob-
tain

d 2 .
72 F(B.B.A,B)= ;F(A,B,A,B)F(B,A,A,B),
(B13)

d .
EZF(B,A,A,B)=2F(B,A,A,B)
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1 o
X1+ —;F(A,B,A,B)F(B,A,A,B) ,
(B14)

from which the derivatives of D(B) and D,(B) can be writ-
ten as

AOB)_2 pans
2o = F(B.AAB)
1
X{1+;[F(A,A,A,B)—F(A,B,A,B)]]’
(B15)
dDy(B) .
— —=2F(B.A.A.B)

X

1
1+ —[F(A.A.A.B) +F(A,B,A,B)]} .

(B16)

As explained in Sec. III, F(A,A,A,B)=—F(B,B,A,B) and
F(B,A,A,B)=—F(A,B,A,B) because the function O is
odd and A= —B*. Using these properties in Egs. (B15) and
(B16), one can find that

d 2,
ED(B): ;F(B,A,A,B)D(B), (B17)

i(l_Dz(B)

2. 1
da )=—;F(B,A,A,B)(1—;T—D2(B)>.

(B18)

v

Then the total derivative of J is obtained straightforwardly.

dJ_dD(B)(l_DZ;B)) d (I_DZ(B))zo_

da  da +D(B)E
(B19)

Equation (B19) together with J=1 at a=0 implies that
J=1 for any value of a.

APPENDIX C: MODULAR TRANSFORMATION
PROPERTIES OF £

In this appendix we examine the modular covariance of
the TPF for the ASSV model in Eq. (73). It is convenient to
work with the Gaussian model TPF with the shift boundary
conditions [12] :

T8
Z (7)) = Zgexp —7-|n—7'm[2}, (C1)
where
Zyn=%— ©2)
L\ T)= 5 =
S @@

is the Gaussian model TPF with the periodic boundary con-
ditions. They have modular transformation properties as

1
90-475,,1‘,‘(T):%m‘n-%m('r+ l)zz""m( N ;) (©3)
or combining these

(C4)

at+b
ct+d)’

%m,n( T) = 7{%’dm—i—cn,an+bm<

where a,b,c, and d are integers with ad—bc=1.

The generalized Coulombic partition function defined in
Eq. (74) is written in terms of Z,, , by applying the Poisson
sum formula

0

Z_ flm—10)= _E_ 2™l g (2rm), (C5)
with

sto= [ ax et (©s)

First, Eq. (74) can be written as

~ 1
%gC(a’B;l’lllT):anz exp[— mg ™' (n—B)*—2mil'(n— B)—2mial]
X3 exp - %(m—l)2+27ri[7"(n—,3)—a](m—l) . )

Then, applying the Poisson sum formula to the sum over m in Eq. (C7), one can express % gc in terms of &, ,, as

Z o, Bl ) =Zo(7) 2

e
mnel

The TPF in Eq. (73) becomes

Z(pL.ppil,l";M,N|7)=exp[ miMI1(2p,— 1)~ wiNIl'(2pp—1)1Zo(7) >

f2m‘(m+a)l—2wil’(n—3)%nﬂﬂ,m+a(T). (CS)

f27'ri(m+a)l—Zwil'(nvﬂ)ojzn_ﬂ m+a( T),

(C9)

e
mnel
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where a={Mp,} and B={Npp} where {x} denotes the fractional part of x.

Under the transformation 7— 7+ 1,

Zocla, Bl | 1) =Zy(1) 2,

e
mmnel

—2-n'i1(m+a)—2‘rril’(n—ﬂ)£®>—n_ﬁ m+n+a—ﬂ(T+ 1)

=Z(r+1) 2 e millntamp2mill=D=Pg, o p(7+1)
mineZ
=Zycla= BB —1|7+1), (C10)
which means that
Zocla.BiLl' [T+ 1) = Zyc(at BB +1|7). (c11)
So, the TPF £ transforms under the transformation 7— 7+ 1 as
Z(pr.pp:l,l"sM, N7+ 1)=Z(p},pp:l,l' +1;M+N,N|7), (C12)
where
pL= % (C13)
Similarly, o@’gc transforms under the transformation 7— — 1/7 as
L@ Bl =Zo(1) 2 e iR (= 7)
=£0( — lT)mJ,EEZ e*21"'1'(n-B)~27ri(*l)(m~a)(%m_a’n_ﬂ(_ LT)
=Zoc(=Boasl’,— 1= 1), (C14)
which means that
Zocla. BilI'| = 1) =Ly Bo— =1, 1| 7). (C15)
From this, one can also find that
Z(pr.ppill"sM.N|= 1)=Z(pr.ppr = 1'.LiN.M|7), (C16)
where
PL=Pp> Pp=1—pL. (c17)
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